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Abstract-The transient velocity and temperature fields have been calculated for the sudden start of Couette 
flow for fluids with Prandtl numbers of 1,100 and 1000 and with a viscosity which decreases exponentially 
with temperature. The velocity field established itself much more rapidly than the temperature field for the 
fluids with Prandtl numbers 100 and 1000. The development of the temperature field occurs only after the 
velocity field is already established for fluids with Prandtl numbers larger than 1000 when the Nahme 

number has values smaller than 80. 

1 s INTRODUCTION 

HEAT generation due to viscous dissipation in flowing 
fluids acts like a heat source. The temperature increase 
resulting in this way is especially large when either the 
velocity gradient or the viscosity of the fluid assumes 
large values. A large viscosity is also reflected in large 
values of the Prandtl number. For oils used in lubri- 
cation the Prandtl numbers are of the order of IO*- 
lo4 whereas for liquid polymers they assume values 
up to lo*. The viscosity of such liquids also decreases 
strongly with temperature. These characteristics 
create special features in the flow processes which are 
described extensively in the literature. Some rep- 
resentative papers are listed in refs. [l-8]. The tem- 
perature fields caused by viscous heating of such fluids 
were analyzed by Winter [S]. It was pointed out in ref. 
191 that viscous heating of such fluids can lead to 
situations in which the fluid tem~rature increases 
exponentially in a process referred to as hydro- 
dynamic thermal burst. References [l&12] also 
consider this process. 

The present paper studies the velocity and tem- 
perature profiles generated under the influence of 
viscous heating in an unsteady starting process for 
fluids whose viscosity is exponentially dependent upon 
temperature. This problem is governed by two dimen- 
sionless groups: the Nahme number and the Prandtl 
number. It appears that such a situation has not been 
investigated before. A simple geometry has been selec- 
ted to bring out clearly the basic features of such flow 
and heat transfer processes. The results are obtained 
for a range of Prandtl numbers and Nahme numbers. 

2. FORMULATION 

Conservation equations and boundary conditions 
The geometric model selected for the study is shown 

schematically in Fig. 1. The fluid occupies an annular 
space of width b between two concentric cylinders. 
Initially, everything is at rest and at uniform tempera- 
ture T,,. At time z = 0 the inner cylinder is suddenly 

set in motion and rotates with a constant angular 
velocity whereas the outer cylinder remains at rest. In 
the course of time, the fluid gradually participates 
in the motion and viscous dissipation increases the 
temperature. From rotational symmetry it follows 
that the velocity vector u points in the ci~~fe~ntial 
direction and depends only on the radial position, 
This is also true for the temperature T. The tem- 
peratures of the two boundaries of the fluid are 
maintained at the original value T,, by cooling. The 
thickness of the fluid layer b is assumed to be small 
compared to the radius R so that the problem becomes 
identical to Couette flow with uniform pressure in the 
flow direction. 

The momentum equation under these conditions 
for which the convective inertia terms disappear 
reduces to 

where u denotes the local velocity at the distance 
y from the outer cylinder, p and p are the density 
and the viscosity, respectively. The energy equation 

FIG. 1. Geometry considered in the present study. The thick- 
ness b of the annular fluid layer is assumed small compared 

with the radius R. 
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I NOMENCLATURE 
I 

b 

; 
T 
t 

u 
IA 

Y 

width of the annular space in Fig. 1 
specific heat 
thermal conductivity 
temperature 
temperature measured with reference to 

7-0 
velocity of the inner cylinder in Fig. 1 
local velocity 
coordinate normal to the flow direction. 

Greek symbols 

B a parameter defined by equation (6) 

P density 

p viscosity 
r time. 

Dimensionless parameters 
Na Nahme number defined by equation (9) 
Pr Prandtl number defined by equation (9). 

Indices 

: 
refers to constant viscosity 
refers to temperature T,,. 

simplifies to 

2 

(2) 

with c denoting the specific heat and k the thermal 
conductivity. 

The initial and the boundary conditions are: 

z I 0: - u = 0, T= TO (3) 

y = 0: 24 = 0, T= TO (4) 

y=b: u=U, T=T,,. (5) 

The velocity U of the inner cylinder is equal to RR 
where R is the angular velocity. 

Properties 
The density, specific heat and thermal conductivity 

are assumed constant. The viscosity is frequently 
approximated by the equation 

p = &e-PY-rd (6) 

which was originally suggested by Ludwig Prandtl. 
For polymers, the viscosity depends on the shear rate 
as well as temperature. Equation (2.15) in ref. [5], 
which approximates the viscosity for shear flow at 
constant density, transforms for the flow in Fig. 1 to 
the relation 

p. e-B(T-To) (7) 

in which the term U/b denotes a reference shear and 
p0 is the viscosity at the reference shear and at the 
temperature T,. The pressure dependence which is 
usually small has been neglected. The term m assumes 
the value 1 [and equation (7) reduces to equation (6)] 
at low shear rates and a value between 2 and 5 at shear 
rates occurring in polymer processing. The simpler 
equation (6) is used in the present study. 

Dimensionless equations 
Equations (1HS) are now made dimensionless 

with the introduction of the following dimensionless 
variables 

kz 
I=;3 y = 5, t = B(T- T,), (8) 

and dimensionless parameters 

where Na is referred to as the Nahme number. The 
momentum equation (1) takes on the form 

(10) 

and the energy equation (2) reduces to 

at a3 
z=$j+(Nao)e-’ (11) 

The dimensionless initial and boundary conditions 
are: 

250: u=o, t=o (12) 

y=o: u=o, t=o (13) - 
y= 1: u= 1, i=o. (14) - 

The solution for the dimensionless temperature field 
and the dimensionless velocity field will have the form 

(t or 3) = f(Nao, Pro, r, Y). (15) -- 

For steady state, which will be approached asymptot- 
ically at large values of time, the left hand term in 
equation (1) is zero and the Prandtl number drops out 
of equation (10). The dimensionless temperature and 
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velocity fields are described by equations of the form: 

@orU) =~WQ,I,J). (16) 

The asymptotic solutions are, therefore, independent 
of Prandtl number. The energy equation becomes: 

2 

2 + (Nu,)e~ = 0. 
dy2 

(17) 

The maximum temperature fmax in the fluid is ob- 
tained by a solution of this equation. For constant 
viscosity it assumes the form 

(18) 

Solution methodology 
The numerical methodology and the presentation 

of the results will be described in this section. The 
primary tool used in solving the coupled partial 
differential equations (10) and (11) and their associ- 
ated initial and boundary conditions is the Patankar- 
Spalding method [13]. This is a fully implicit, finite- 
difference scheme designed for two-dimensional para- 
bolic problems. The non-linear viscous dissipation 
term on the RHS of equation (10) was linearized and 
was introduced as an extra source term in the 

program. The solution is obtained by starting with 
known values at 2 = 0 and marching with time in the 
direction of increasing I. Multiple iteration was 
required at each time step as a result of the non- 
linearity and inter-linkage in the governing equations. 

The solution was carried out with 100 grid points 
in the region 0 < y < 1 and, in the r direction, the 
computation was continued with time steps as small 
as 10-6until asymptotic values for velocity and tem- 
perature were reached for most cases. 

Aside from the accuracy tests involved with the step 
size studies, comparison of the results were made with 
the asymptotic steady-state solution by Nahme [l]. 
The results agreed to within 0.1%. 

Representative results describing the velocity and 
temperature field will now be described. 

3. RESULTS 

Figures 24 present profiles of the dimensionless 
velocity u and of the dimensionless temperature t_ as a 
function of the dimensionless distance y. The Prandtl 
number varies in the figures in a veriical direction 
having the values 1,100 and 1000. The Nahme number 
has the value 8 in Fig. 2 and the value 80 in Fig. 3. 
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FIG. 2. Dimensionless velocity profiles u and temperature profiles r for a Nahme number 8 and for three 
Prandtl numbers. The boundaries of the fluid layer are kept at the dimensionless temperature r = 0. 
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No=60 
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FIG. 3. Dimensionless velocity profiles 4f and temperature profiles 1 for a Nahme number of 80 and for 
three Prandtl numbers. The dimensionless temperature 1 at the boundaries is maintained at a value 0. 

Figure 4 contains a selected number of diagrams with 
various Prandtl and Nahme numbers. The dimen- 
sionless time r is the parameter on the curves. 

Steady state 
The asymptotic steady state will be discussed at 

first. It can be observed in Figs. 2 and 3 that the 
asymptotic velocity and temperature profiles are 
identical for the three Prandtl numbers, confirming 
equation (16). The velocity profiles are S-shaped. This 
can be readily understood considering the fact that 
the shear stress cr is, in the steady state, constant 
throughout the layer. According to the equation 
r = p(du/dy), the velocity gradient is large in the 
center part of the layer where the temperature is high 
and the viscosity is small and the gradient is smaller 
near the two walls where the temperature is lower and 
the viscosity larger. For a temperature-independent 
viscosity the velocity profile is a straight line as shown 
by the dashed curve in Fig. 2. 

Figure 5 compares the actual velocity profiles u of 
a fluid with constant viscosity with the profile of a 
fluid with a viscosity decreasing with increasing tem- 
perature. The velocity U at the border is kept constant 
in the comparison for the left-hand figure and the 
wall shear (and therefore the velocity gradient) is kept 

constant for the right-hand figure. It is obvious that 
the wall shear is smaller for the variable viscosity fluid 
than for the constant property one where the velocity 
U is constant, but that the velocity U is larger for the 
variable viscosity fluid than for the constant property 
fluid when the wall shear gO is constant in the com- 
parison. It will be shown later that this is the root of 
the hydrodynamic thermal burst. 

For the condition cr,, = const. the Nahme number 
has to be defined using the prescribed wall shear 
instead of the velocity. It then has the form 

,=z, (19) 
Pok 

\ I 

The effect of viscous heating is very pronounced in 
engineering developments which operate with gas or 
air streams at high subsonic or supersonic velocities, 
for instance in gas turbines, high speed aeroplanes and 
space vehicles. The effect is there called ‘aerodynamic 
heating’ and the Eckert number 

EC = c 
CAT 

has occasionally been used to describe it quantitatively 

1141. 
Gases have Prandtl numbers of order 1. The dia- 
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No=60 
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FIG. 4. Dimensionless velocity profiles u and temperature profiles 1 for three combinations of the Nahme 
and Prandtl numbers. The temperature 1 at y = 0 is maintained at zero and the boundary at y = 1 is 

adiabatic. 

grams for this Prandtl number, in Figs. 2-4, however, 
do not describe aerodynamic heating quantitatively 
because the temperature dependence of gases is not 
described by equation (6). The trends in their behavior 
should be represented by the figures. The parameter 
in equation (20) takes on the form: 

then the product of Eckert and Prandtl numbers: 

Na = EcsPr. (22) 

The fact that the temperature and velocity fields 
depend for the present situation only on the product 
Ec,Pr for large Prandtl numbers is analogous to the 
situation that the Nusselt number depends in many 
forced-convection problems only on the product of 
Reynolds and Prandtl number, the Stanton number 

St 

(21) 

when l/b is used as the prescribed term with the 
dimension of a temperature. The Nahme number is 

U = const 

Y 

LZ 
U 

St = RePr (23) 

co = const 

FIG. 5. Velocity profiles for the boundary condition U = 0 and o0 = 0. 
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or in natural convection only on the product of 
Grashof number Gr and of Prandtl number. The 
dimensionless Stanton number St and the Rayleigh 
number Ra have been defined accordingly as shown 
in equations (23) and (24). 

Ra = GrPr (24) 

Transient state 

The transient temperature profiles in Figs. 2 and 3 
show that the time 2 required for the development of 
the temperature profile does not depend strongly on 
Prandtl number. It is somewhat larger at Pr = 1 than 
at Pr = 100 or 1000. The situation is radically different 
for the velocity profile. For a Prandtl number of 1, 
the time to develop the steady velocity profile is of the 
same order of magnitude as the time required for the 

development of the temperature profile. At a Prandtl 
number of 100, the velocity profile develops much 
faster than the temperature profile and for a Prandtl 
number of 1000, the velocity profile has already 
developed before the temperature in the fluid layer 
has increased to any amount. Many papers concerned 
with the viscous heating effect of large Prandtl number 
fluids are, therefore, correctly based on the assump- 
tion that the temperature profile starts to develop 
only after the velocity profile has already acquired its 
steady-state value and that the left-hand term in the 
momentum equation (1) can be approximated by the 
value zero. Physically this means that the effect of 
inertia has vanished and that shear is the only remain- 
ing force. The shear stresses are then uniform in 
magnitude across the fluid layer for the Couette flow 
situation. 

The time requited to reach asymptotically the 
steady state can be divided into two parts for fluids with 
a Prandtl number larger than 1000 and for a Nahme 
number smaller than 80. In the first part, occurring 
immediately after the start of the flow, the effect of 
inertia is still strong and influences the development 
of the velocity profile whereas the temperature is prac- 
tically maintained at the original value. In the second 
part of the development time, the effect of the inertia 
has vanished and the shear is distributed uniformly 
throughout the fluid. The velocity profile changes 
during this time period somewhat from a straight line 
to an S-shaped curve under the influence of the varying 
viscosity. The temperature in the fluid increases and 
reaches asymptotically a steady state for which, in any 
cross-section, all of the energy dissipated into heat is 
conducted away to the boundaries of the fluid layer. 
In this part of the time t the velocity and temperature 

fields and the heat transfer to the walls do not depend 

on Prandtl number but only on Nahme number. The 
first part of the development time is very short com- 
pared to the second part so that the average heat 
transfer is also a function of Nahme number alone. 

During the second part of the development, the 
velocity profile changes its shape from the straight line 
to an S-shaped curve as shown on the left-hand side 
of Fig. 6 where a constant velocity U is maintained 
and as shown on the right-hand side of the figure 
where a constant shear stress crO is maintained. A 
runaway condition called ‘hydrodynamic thermal 
burst’ in which the velocity U and the temperature 
in the fluid increase exponentially may occur at a 
large Nahme number where a constant shear (or a 
constant torque for the cylindrical configuration) 

is maintained. 
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CHAUFFAGE VISQUEUX DE FLUIDES A GRANDS NOMBRES DE PRANDTL 
AVEC UNE VISCOSITE DEPENDANT DE LA TEMPERATURE 

R&un~Les champs variables de temperature et de vitesse sont calcules pour le dtmarrage brutal de 
l’boulement de Couette de fluides ayant des nombres de Prandtl de 1, 100 et 1000 et une viscosite qui 
decroit exponentiellement avec la temperature. Le champ de vitesse s’ttablit plus vite que le champ de 
temperature pour les nombres de Prandtl 100 et 1000. Le developpement du champ de temperature n’est 
atteint qu’une fois le champ de vitesse stabilise pour les nombres de Prandtl sup&ieurs a 1000 lorsque le 

nombre de Nahme a des valeurs inferieures a 80. 

VISKOSEBEHEIZUNG VON FLUIDEN MIT HOHER PRANDTL-ZAHL UND 
TEMPERATURABHANGIGER VISKOSITAT 

Znsammenfassung-Es wurde das transiente Geschwindigkeits- und Temperaturprofil fiir den plotslichen 
Anlauf einer Couette-StrBmung fiir Fluide mit Prandtl-Zahlen von 1, 100, 1000 und einer mit der Tem- 
peratur exponentiell abnehmenden Viskositit berechnet. Das Geschwindigkeitsprof bildet sich bei Fluiden 
mit Prandtl-Zahlen von 100 und 1000 sehr vie1 schneller aus, als das Temperaturprofil. Bei Fluiden mit 
Prandtl-Zahlen von mehr als 1000 erfolgt die Ausbildung des Temperaturprotils nur dann langsamer als 

die Ausbildung des Geschwindigkeitsprofils, wenn die Nahme-Zahl kleiner als 80 ist. 

Bq3KOCTHblH HAI-PEB WIAKOCTEH C 6OJIbIIIMM YMCJlOM l-lPAHHTJDl M 
BII3KOCTbIQ 3ABMCIIlIlEH OT TEMl-IEPATYPbI 

AHHO+a~n-HCCTaUsOHapHbIC nom. CKOP~CTH hi reh4neparypbt pacc~nranbr nna ane3annoro nagana 
TC'lCHI(II Ky3TTa MR XRUKOCTCti C WiCJlaMH npaHXTJU7 1.100~ 1000 A B~3KOCTbEOo.yMCHbIUaEOlUCiiCSlnO 
3KCllOHCHUHa2bHOMy 3BKOHy CyMeHbUlCHW2MTCMUCpaTypbl. &lSl WillKOCTCiiC WiCJlaMtl npaHJITXR 100 

x 1000 none CKOP~~TH ycTafiaenmaev2 3HawTenbHo 6brcTpee,seM none Temeparypbl. ,&~r mn~oc- 

-reti c YncnoM Ilpannrna 6onee 1000 H ‘Incnax HaMe Menbmnx 80, pa3ewmie nom TeMnepaTypL.1 


